Epilepsy is referred to as a neurological disorder, which is detected via examination and manual comprehension of Electroencephalogram (EEG) signals. In deep learning schemes, various enhancements have emerged to efficiently address complex issues by end-to-end learning. The major objective of this research is to propose a new seizure detection approach from EEG signals using a deep learning-based classification technique. The pre-processing is the initial stage, where denoising is performed using a Short-Time Fourier Transform (STFT). Subsequently, the statistical features, time-domain features and spectral features are extracted from the pre-processed signal. Finally, an efficient optimization approach, named Adadelta-Chameleon Swarm Algorithm (Adadelta-CSA), is proposed and employed to train Deep Neural Network (DNN) to carry out the precise seizure prediction. Here, the integration of the Adadelta concept in the Chameleon Swarm Algorithm (CSA) has resulted in Adadelta-CSA. At last, the performance of the Adadelta-CSA scheme-based DNN is compared with the existing techniques by considering accuracy, sensitivity and specificity, and it is found to produce better values of 0.951, 0.966, and 0.935, respectively.
Read full abstract