AbstractThe Geostationary Operational Environmental Satellite-R (GOES-R) Geostationary Lightning Mapper (GLM) instrument detects total lightning rate at high temporal and spatial resolution over the Americas and adjacent oceanic regions. The GLM observations provide detection and monitoring of deep electrified convection. This study explores the impact of assimilating the GLM-derived flash extent density (FED) on the analyses and short-term forecasts of two severe weather events into an experimental Warn-on-Forecast system (WoFS) using the ensemble Kalman filter data assimilation technique. Sensitivity experiments are conducted using two tornadic severe storm events: one with a line of individual supercells and the other one with both isolated cells and a severe convective line. The control experiment (CTRL) assimilates conventional surface observations and geostationary satellite cloud water path into WoFS. Additional experiments also assimilate either GLM FED or radar data (RAD), or a combination of both (RAD+GLM). It is found that assimilating GLM data in the absence of radar data into the WoFS improves the short-term forecast skill over CTRL in one case, while in the other case it degrades the forecast skill by generating weaker cold pools and overly suppressing convection, mainly owing to assimilating zero FED values in the trailing stratiform regions. Assimilating unexpectedly low FED values in some regions due to low GLM detection efficiency also accounts for the poorer forecasts. Although RAD provides superior forecasts over GLM, the combination RAD+GLM shows further gains in both cases. Additional observation operators should consider different storm types and GLM detection efficiency.