Keywords are used to provide a concise summary of the text, enabling the quick understanding of core information and assisting in filtering out irrelevant content. In this paper, an improved TextRank keyword extraction algorithm based on word vectors and multi-feature weighting (IWF-TextRank) is proposed to improve the accuracy of keyword extraction by comprehensively considering multiple features of words. The key innovation is demonstrated through the application of a backpropagation neural network, combined with sequential relationship analysis, to calculate the comprehensive weight of words. Additionally, word vectors trained using Word2Vec are utilised to enhance the model’s semantic understanding. Finally, the effectiveness of the algorithm is verified from various aspects using traffic accident causation data. The results show that this algorithm demonstrates a significant optimisation effect in keyword extraction. Compared with the traditional model, the IWF-TextRank algorithm shows significant improvement in accuracy (p-value), recall (R-value), and F-value.
Read full abstract