Autonomous vehicles (AVs) must fulfill adequate safety requirements before formal application, and performing an effective functional evaluation to verify vehicle safety requires extensive testing in different scenarios. However, it is crucial to rationalize the application of different scenarios to support different testing needs; thus, one of the current challenges limiting the development of AVs is the critical evaluation of scenarios, i.e., the lack of quantitative criteria for scenario design. This study introduces a method using the Spherical Fuzzy-Analytical Network Process (SF-ANP) to evaluate these scenarios, addressing their inherent risks and complexities. The method involves constructing a five-layer model to decompose scenario elements and using SF-ANP to calculate weights based on element interactions. The study evaluates 700 scenarios from the China In-depth Traffic Safety Study–Traffic Accident (CIMSS-TA) database, incorporating fuzzy factors and element weights. Virtual simulation of vehicles in the scenarios was performed using Baidu Apollo, and the performance of the scenarios was assessed by collecting the vehicle test results. The correlation between the obtained alternative safety indicators and the quantitative values confirms the validity and scientific validity of this approach. This will provide valuable guidance for categorizing audiovisual test scenarios and selecting corresponding scenarios to challenge different levels of vehicle functionality. At the same time, it can be used as a design basis to generate a large number of effective scenarios to accelerate the construction of scenario libraries and promote commercialization of AVs.
Read full abstract