One of the most widely used techniques for the quantification of small interfering ribonucleic acid (siRNA) is the ultraviolet (UV) spectroscopy method. However, due to uncertainties in the extinction coefficient affecting the accuracy of the method and a sample preparation including several dilution steps, the purpose of this study was to explore the possibility of determining the content of siRNA by a platform method using quantitative 31P nuclear magnetic resonance (31P-qNMR) and the internal standard method. In this paper, acquisition time, selection of a suitable internal certified reference material, signal selection used for quantification, relaxation delay, and precision are discussed. In addition, the robustness of the method and the ability to apply this platform method to both drug substance (DS) and drug product samples is also discussed. Quantifications of siRNA determined by the 31P-qNMR platform method were on average 98.5%w/w when adjusting for the sodium and water contents. The data confirmed the applicability of 31P-qNMR in siRNA content determinations. The quantifications were compared to quantifications determined by the traditional UV spectroscopy method by F- and t-tests. The statistical tests showed that the platform 31P-qNMR method provided more accurate results (mass balance close to 100% w/w) compared to the traditional UV spectroscopy method when analyzing DS samples.