Coral reefs are valuable ecosystems that face vulnerability to climate change impacts. Underwater images often encounter noise from various factors, such as water turbidity, lighting conditions, attenuation, and scattering, which can complicate edge detection and segmentation processes, leading to inaccuracies. However, image processing techniques offer a viable solution to this issue. In this study, an edge-based segmentation approach is proposed that uses multiple contrast techniques to detect and quantify changes in coral reef imagery. The proposed approach effectively identifies changes in coral reef imagery, making it a valuable tool for monitoring climate change's effects on these ecosystems. Furthermore, high-resolution images at different time points and locations were collected, and then an edge-based segmentation approach was utilized to enhance the accuracy of edge detection and segmentation. Comparing the proposed method with traditional segmentation techniques showed a significant improvement in terms of segmentation precision. Subsequently, alterations in the structure and composition of coral reefs are observed, indicating the influence of climate change on these ecosystems. This research highlights the capabilities of image processing techniques using edge-based segmentation in monitoring coral reefs. It offers an effective and precise approach to detecting changes in coral reef images, thereby contributing to conservation endeavors.
Read full abstract