CsPbI3 perovskite quantum dots (PQDs) have emerged as promising photovoltaic materials for third-generation solar cells, owing to their superior optoelectronic properties. Nevertheless, the performance of CsPbI3 PQD solar cells is primarily hindered by low carrier extraction efficiency, largely due to the insulative ligands. In this study, we introduced a semiconductor molecule, [6,6]-phenyl C61 butyric acid methyl ester (PCBM), onto the surfaces of CsPbI3 PQDs as surface ligands to enhance photogenerated charge extraction. The results indicate that PCBM accelerates carrier separation in CsPbI3 PQDs by forming a type II heterojunction, and also modulates the energy level of CsPbI3 PQDs by altering surface dipole moments. Additionally, we established an energy-level gradient alignment in the PCBM/CsPbI3 PQD heterojunction absorber layer, which was found to effectively promote carrier extraction and reduce carrier recombination loss in PQD solar cells. Ultimately, the PQD solar cells incorporating this novel structure achieved a power conversion efficiency of 14.23%, a significant improvement compared to 12.69% achieved by solar cells with a traditional structure, thus demonstrating the strong potential of this approach for high-performance PQD solar cells.
Read full abstract