Traditional recommendation techniques often prioritize target behavior in practical recommendation scenarios(e.g., follow, play and buy). However, these approaches suffer from data sparsity issues and may not fully capture user’s personal preferences. To address this deficiency, multi-behavior recommendation technology has emerged, leveraging users’ multi-behavioral interactions for recommendation. Nevertheless, certain multi-behavior recommendation methods learning behavioral information from each behavior separately and then aggregate them before making recommendation, which inadvertently neglects the intrinsic connections between different behaviors. In some scenarios, user behavior often occurs in a fixed order, such as view -> cart -> buy in e-commerce platforms. In this work, we propose a novel Cascading Graph Constrastive Learning (CGCL) framework for Multi-Behavior recommendation. Specifically, we devise a graph contrastive learning block to learn distinctive user behavioral representations for each type of interaction. Leveraging the recommendation task, we aim to capture user preferences, while the contrastive learning provides supplementary supervisory signals to refine the user and item representation. By acknowledging the sequential order of behaviors, we utilize the cascading structure within our model to iteratively propagate and purify the personalized preferences of users. Extensive experimental results and ablation studies on three real-world datasets have shown that our CGCL framework outperforms various state-of-the-art recommendation methods and validated the effectiveness of our approach.
Read full abstract