Wheat plays an important role in China’s and the world’s food supply, and it is closely related to economy, culture and life. The spatial distribution of wheat is of great significance to the rational planning of wheat cultivation areas and the improvement of wheat yield and quality. The current rapid development of remote sensing technology has greatly improved the efficiency of traditional agricultural surveys. The extraction of crop planting structure based on remote sensing images and technology is a popular topic in many researches. In response to the shortcomings of traditional methods, this research proposed a method based on the fusion of the pixel-based and object-oriented methods to map the spatial distribution of winter wheat. This method was experimented and achieved good results within Shandong Province. The resulting spatial distribution map of winter wheat has an overall accuracy of 92.2% with a kappa coefficient of 0.84. The comparison with the actual situation shows that the accuracy of the actual recognition of winter wheat is higher and better than the traditional pixel-based classification method. On this basis, the spatial pattern of winter wheat in Shandong was analyzed, and it was found that the topographic undulations had a great influence on the spatial distribution of wheat. This study vividly demonstrates the advantages and possibilities of combining pixel-based and object-oriented approaches through experiments, and also provides a reference for the next related research. Moreover, the winter wheat map of Shandong produced in this research is important for yield assessment, crop planting structure adjustment and the rational use of land resources.
Read full abstract