Post-marketing vaccine safety surveillance aims to detect adverse events following immunization in a population. Whether certain methods of surveillance are more precise and unbiased in generating safety signals is unclear. Here, we synthesized information from existing literature to provide an overview of the strengths, weaknesses, and clinical applications of epidemiologic and analytical methods used in vaccine monitoring, focusing on cohort, case-control and self-controlled designs. These designs are proposed to be evaluated in the EUMAEUS (Evaluating Use of Methods for Adverse Event Under Surveillance–for vaccines) study because of their widespread use and potential utility. Over the past decades, there have been an increasing number of epidemiological study designs used for vaccine safety surveillance. While traditional cohort and case-control study designs remain widely used, newer, novel designs such as the self-controlled case series and self-controlled risk intervals have been developed. Each study design comes with its strengths and limitations, and the most appropriate study design will depend on availability of resources, access to records, number and distribution of cases, and availability of population coverage data. Several assumptions have to be made while using the various study designs, and while the goal is to mitigate any biases, violations of these assumptions are often still present to varying degrees. In our review, we discussed some of the potential biases (i.e., selection bias, misclassification bias and confounding bias), and ways to mitigate them. While the types of epidemiological study designs are well established, a comprehensive comparison of the analytical aspects (including method evaluation and performance metrics) of these study designs are relatively less well studied. We summarized the literature, reporting on two simulation studies, which compared the detection time, empirical power, error rate and risk estimate bias across the above-mentioned study designs. While these simulation studies provided insights on the analytic performance of each of the study designs, its applicability to real-world data remains unclear. To bridge that gap, we provided the rationale of the EUMAEUS study, with a brief description of the study design; and how the use of real-world multi-database networks can provide insights into better methods evaluation and vaccine safety surveillance.