PurposeThis study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor (BR) onboard the vehicle, which overcomes the vulnerability of having conventional temperature sensor.Design/methodology/approachIn this study, the energy model based sensorless estimation method is developed. By analyzing the structure and the convection dissipation process of the BR onboard the vehicle, the energy-based operational temperature model of the BR and its cooling domain is established. By adopting Newton's law of cooling and the law of conservation of energy, the energy and temperature dynamic of the BR can be stated. To minimize the use of all kinds of sensors (including both thermal and electrical), a novel regenerative braking power calculation method is proposed, which involves only the voltage of DC traction network and the duty cycle of the chopping circuit; both of them are available for the traction control unit (TCU) of the vehicle. By utilizing a real-time iterative calculation and updating the parameter of the energy model, the operational temperature of the BR can be obtained and monitored in a sensorless manner.FindingsIn this study, a sensorless estimation/monitoring method of the operational temperature of BR is proposed. The results show that it is possible to utilize the existing electrical sensors that is mandatory for the traction unit’s operation to estimate the operational temperature of BR, instead of adding dedicated thermal sensors. The results also validate the effectiveness of the proposal is acceptable for the engineering practical.Originality/valueThe proposal of this study provides novel concepts for the sensorless operational temperature monitoring of BR onboard rolling stocks. The proposed method only involves quasi-global electrical variable and the internal control signal within the TCU.
Read full abstract