Railway tracks must be managed appropriately because their conditions significantly affect railway safety. Safety is ensured through inspections by track maintenance staff and maintenance based on measurements using dedicated track geometry cars. However, maintaining regional railway tracks using conventional methods is becoming difficult because of their poor financial condition and lack of manpower. Therefore, a track condition diagnostic system is developed, wherein onboard sensing devices are installed on in-service vehicles, and the vibration acceleration of the car body is measured to monitor the condition of the track. In this study, we conduct long-term measurements using the system and evaluate changes in the track conditions over time using car-body vibration data. Filed test results showed that sections with degraded tracks were identified using car-body vibration data. The track degradation trend can be constructed using the results obtained. Furthermore, this study demonstrated that the track maintenance effect could be confirmed. A method for improving train position using the yaw angular velocity is proposed. The track irregularity position can be shown more clearly by monitoring the track condition using position-corrected data using the proposed method. It is also shown that the time-frequency analysis of measured car-body vertical acceleration is effective for evaluating the track condition more clearly.
Read full abstract