Mass-loss from evolved stars chemically enriches the ISM. Stellar winds from massive stars and their explosions as SNs shape the ISM and trigger star formation. Studying evolved stars is fundamental for understanding galaxy formation and evolution, at any redshift. We aim to establish a photometric classification scheme for Galactic mass-losing evolved stars (e.g., WR, RSG, and AGB stars) with the goal of identifying new ones, and subsequently to use the sample as tracers of Galactic structure. We searched for counterparts of known Galactic WR, LBV, RSG, and O-rich AGBs in the 2MASS, GLIMPSE, and MSX catalogs, and we analyzed their properties with near- and mid-infrared color-color diagrams. We used the Q1 parameter, which measures the deviation from the interstellar reddening vector in the J-H versus H-Ks diagram, and we defined a new parameter, Q2, that measures the deviation from the interstellar reddening vector in the J-Ks versus Ks-[8.0] diagram. The latter plane enables to distinguish between interstellar and circumstellar reddening, and to identify stars with envelopes. WR stars and late-type mass-losing stars are distributed in two different regions of the Q1 versus Ks-[8.0] diagram. A sequence of increasing [3.6]-[4.5] and [3.6]-[8.0] colors with increasing pulsation amplitudes (SRs, Miras, and OH/IRs) is found. Spectra of Miras and OH/IRs have stronger H2O absorption at 3.0um than SRs or most of the RSGs. Masing Miras have H2O, but stronger SiO (~ 4 um) and CO2 absorption (~4.25 um), as suggested by their bluer [3.6]-[4.5] colors. A fraction of RSGs (22%) have the bluest [3.6]-[4.5] colors, but small Q2 values. We propose a new set of photometric criteria to distinguish among IR bright Galactic stars. The GLIMPSE catalog is a powerful tool for photometric classification of mass-losing evolved stars. Our new criteria will yield many new RSGs and WRs.