Abstract In recent years, blood flow analyses of diseased arterial mock vessels using particle image velocimetry (PIV) have been hampered by the inability to fabricate optically clear anatomical vessel models that realistically replicate the complex morphology of arterial vessels and provide highly resolved flow images of flow tracer particles. The aim of this paper is to introduce a novel approach for producing optically clear 3-D printed rigid anatomical arterial vessel models that are suitable for PIV analysis using a common 3-D inkjet printing process (using a Formlabs Form 2 3-D printer) and stock clear resin (RS-F2-GPCL-04). By matching the index of refraction (IOR) of the working fluid to the stock clear resin material, and by printing the part in a 45-deg print orientation, a clear anatomical model that allows clear visualization of flow tracer particles can be produced which yields highly resolved flow images for PIV analyses. However, a 45-deg print orientation increases the need for post-processing due to an increased amount of printed support material. During post-processing, the part must be wet sanded in several steps and surface finished with Novus Plastic Polish 3 Step System to achieve the final surface finish needed to yield high-resolution flow images. The mock arterial vessel model produced in this work is a 3-D printed diseased carotid bifurcation artery developed from CTA scan data. A PIV analysis was conducted on the developed mock arterial vessel model installed in a complex transient flow loop to assess the flow profiles within the model and the clarity of the model. A computational fluid dynamics (CFD) simulation was conducted on the same carotid bifurcation arterial geometry, and the results were used as a benchmark comparison for PIV results. The results obtained in this work show excellent promise for using the developed approach for developing 3-D printed anatomical vessel models for experimental PIV analyses. The fabrication methodology of the clear anatomical models, PIV results, and CFD results is described in detail.
Read full abstract