Current total concentration-based methods for source attribution and risk assessment often overestimate metal risks, thereby impeding the formulation of effective risk management strategies. This study aims to develop a framework for source-specific risk assessment based on metal bioavailability in surface river sediments from a human-dominated seaward catchment in eastern China. Metal bioavailability was quantified using chemical fractionation results, and source apportionment was conducted using the positive matrix factorization (PMF) model. Risk assessment integrated these findings using two indices: the Potential Ecological Risk Index (PERI) and the Mean Probable Effect Concentration Quotient (mPEC-Q), with uncertainty addressed via Monte Carlo simulations. Results indicated that average total concentrations of Cu, Pb, Zn, Cr, Hg, Cd, and As exceeded their respective background levels by 1.63 to 15.00 times. The residual fraction constituted the majority, accounting for 53.84 % to 77.79 % of total concentrations, suggesting significant natural origins. However, source apportionment revealed a predominant contribution from anthropogenic activities, including industrial smelting, agricultural practices, and atmospheric deposition. The contributions were found to vary between 5.35 % and 40.03 % when the total concentration was adjusted to bioavailable content. Total concentration-based PERI/mPEC-Q assessments indicated high/moderate risk levels, decreasing to considerable/low risk levels with bioavailability adjustment. Hg and Cd were identified as priority metals. Further incorporating source appointment parameters into the risk assessment, industrial smelting was identified as the primary contributor, accounting for 66.06 % of total risk by total concentration and 65.63 % by bioavailability. This underscores the role of bioavailability in mitigating risk overestimation. Monte Carlo simulations validated industrial smelting as a major risk contributor. This study emphasizes the importance of considering bioavailability in the source-risk assessment of sediment-metals, crucial for targeted risk management in urbanized catchment areas.
Read full abstract