Polymeric fibrin provides the structural and mechanical stability of a blood clot. Fibrin fibers are rod-like and create a network mesh that holds blood cells. When a clot has performed its physiological function in wound healing and preventing excessive blood loss, it must be resolved by the enzymatic degradation of fibrin, otherwise known as fibrinolysis. If a blood clot forms when or where it is not needed, as occurs in ischemic strokes and myocardial infarctions, the blood clot (thrombus) can obstruct blood flow to downstream organs. Obstructive thrombi must be degraded or removed to prevent further complications. If a clot is not degraded on its own, lytic agents (i.e., tissue plasminogen activator, tPA) are given exogenously to induce fibrinolysis. Here, we fluorescently labeled both fibrin and tPA to visualize degradation at the edge of the clot. The fibers with bound tPA were looped or coiled while the fibers farther into the clot remain straight and stable displaying the diffusion of tPA and depth of lysis. This image provides (1) a new method to monitor fibrinolysis with a commercially available chamber with convenient inlets and (2) the visualization of tPA-bound fibrin and the behavior of fibers during degradation. Future work could utilize this technique to study tPA molecule and fibrin interactions, lysis front degradation, and fibrin fiber linearity to understand the mechanisms of intermolecular dynamics dependent on network structure. An enhanced insight into this process can aid in the development of optimized therapeutics to target stubborn clots.
Read full abstract