In this paper, we have proposed a reaction–diffusion system of partial differential equations which model the plankton-nutrient interaction mediated by a toxin-determined functional response. It has been established that microalgae, a clean and green source of energy, can be potentially used for carbon capture and sequestration. The common biofuels (bio-diesel and ethanol) are efficiently extracted from microalgae of different shapes and sizes. A spatio-temporal model has been presented to guide exploration and harvesting of microalgae (e.g., dinoflagellates, cilliates, chlorella, etc.). The spatial distribution of the phytoplankton (microalgae) is determined by growth pattern of the biotic subsystem (phytoplankton and zooplankton); e.g., whether it is oscillatory or aperiodic. The model incorporates a toxin-determined functional response of the zooplankton, which can be parametrized for specific phytoplankton–zooplankton combinations in different aquatic bodies such as ponds, seas, and oceans. The present model does not take into account higher zooplankton’s role in maintaining the core subsystem. The temporal model is analytically investigated in terms of the existence criteria and stability analysis (both linear and nonlinear) of the possible equilibria and the spatio-temporal model is studied in terms of global stability, Turing instability and existence of Hopf-bifurcation which help us to explore the dynamical behavior of the spatial model system. Numerical simulations are carried out to support the obtained theoretical results. Simulation experiments and computed densities thereof (equal densities are codes by same color) suggest that the spatial distribution of microalgae is complex; e.g., spatial density of microalgae varies chaotically for certain parameter sets. Harvesting schedule can be designed based on information thus derived. It should be implemented carefully in case the spatial density distribution is chaotic.The sustainability of the marine system for future use has been the prime concern. Parameters of harvesting strategy (time, intensity and technology) are determined in such a way that exploitation causes minimal damage to the environment and the yield of the harvest is maximal. Future studies would consider larger carnivorous fishes (e.g., Squids, Dolphins) on system’s dynamics. The effect of oceanic noise and colloidal swarming of zooplankton in the presence of bacteria will also be incorporated.
Read full abstract