Acute ischemic stroke (AIS) is a significant global health issue, directly impacting mortality and disability. The Totaled Health Risks in Vascular Events (THRIVE) score is appreciated for its simplicity and ease of use to predict stroke clinical outcomes; however, it lacks laboratory and neuroimaging data, which limits its ability to predict outcomes precisely. Our study evaluates the impact of integrating the 24-hour Alberta Stroke Program Early CT Score (ASPECTS) and hemoglobin-to-red cell distribution width (HB/RDW) ratio into the THRIVE score using the multivariable fractional polynomial (MFP) method (combined THRIVE-MFP model) compared to the THRIVE-c model. We aim to assess their added value in predicting in-hospital mortality (IHM) prognosis. A retrospective study from January 2015 to July 2022 examined consecutive AIS patients receiving intravenous thrombolysis. Data on THRIVE scores, 24-hour ASPECTS, and HB/RDW levels were collected upon admission. The model was constructed using logistic regression and the MFP method. The prognostic value was determined using the area under the receiver operating characteristic curve (AuROC). Ischemic cerebral lesions within the middle cerebral artery territory were evaluated with non-contrast computed tomography (NCCT) after completing 24 hours of intravenous thrombolysis (24-hour ASPECTS). Among a cohort of 345 patients diagnosed with AIS who received intravenous thrombolysis, 65 individuals (18.8%) experienced IHM. The combined THRIVE-MFP model was significantly superior to the THRIVE-c model in predicting IHM (AuROC 0.980 vs. 0.876, p<0.001), 3-month mortality (AuROC 0.947 vs. 0.892, p<0.001), and 3-month poor functional outcome (AuROC 0.910 vs. 0.853, p<0.001). The combined THRIVE-MFP model showed excellent predictive performance, enhancing physicians' ability to stratify patient selection for intensive neurological monitoring and guiding treatment decisions. Incorporating 24-hour ASPECTS on NCCT and HB/RDW proved valuable in mortality prediction, particularly for hospitals with limited access to advanced neuroimaging resources.
Read full abstract