Lower-lignin (LoL) varieties of alfalfa (Medicago sativa L.) have been developed in recent years, and have the potential to positively impact animal performance. The objective of this study was to evaluate the effects of increasing the proportion of LoL alfalfa hay in diets fed to lactating dairy cows. Research plots were planted with a conventional variety (CON; Dairyland Hybriforce 3400), and 2 LoL varieties (LLG; 54HVX42 and LLB; Aflorex HiGest 460). After harvest, the LoL varieties were blended in equal proportions for feeding. Twelve multiparous Jersey cows (100 ± 4 d in milk) were used in a 3 × 3 Latin square with 3 periods of 28 d. Cows were assigned to 3 diets containing 0 (CNTRL), 16.1 (MdLL), and 32.2% (HiLL) of the diet DM as LoL alfalfa hay, which replaced CON. The CON alfalfa had average CP, NDF, and lignin contents (DM basis) of 20.5 ± 1.15, 42.1 ± 1.37, and 6.81 ± 0.57%, respectively, while the LoL alfalfa averaged 19.8 ± 0.75, 39.9 ± 1.56, and 6.07 ± 0.28%, respectively. No difference was observed in DMI (20.4 ± 0.61 kg/d). No difference in milk yield was observed, averaging 31.0 ± 1.02 kg/d across treatments. Similarly, no difference was observed in ECM yield (averaging 36.2 ± 1.43 kg/d). Feed conversion (ECM/DMI) tended to increase linearly with LoL alfalfa inclusion (1.74 to 1.80 ± 0.03). No difference was observed for milk fat yield and content (1.39 ± 0.075 kg/d and 4.51 ± 0.219%) or milk protein yield and content (1.06 ± 0.041 kg/d and 3.43 ± 0.096%). Total methane production quadratically decreased from CNTRL to MdLL then increased to HiLL (441, 389, 412 ± 18.2 L/d, respectively). No differences were observed on total-tract digestibility of DM (averaging 67.2 ± 0.55%) and NDF (averaging 50.9 ± 1.56%). No difference was observed in the concentration of DE, ME or NEL was observed averaging 2.82 ± 0.021, 2.51 ± 0.027, and 1.72 ± 0.030 Mcal/kg respectively. Our results suggest that replacing CON alfalfa with LoL alfalfa has no effects on milk production, milk composition, or nutrient digestibility but may improve feed efficiency.
Read full abstract