Monitoring active surface species on an operating technical catalyst is a challenging task due to the presence of multiple different adsorption sites and the abundance of bulk species. In this work, kinetic isotope effect (KIE) spectroscopy is introduced to capture the signals of catalytically relevant hydrogenation species from the IR spectroscopic detection in attenuated total reflection mode. The catalytic interface formed between a cinchona-modified Pt/Al2O3 catalyst and the solvent toluene is sensitively probed directly at the rate limiting step(s) during the asymmetric hydrogenation of ethyl pyruvate by measuring the effects of substituting H2 by D2 kinetically and spectroscopically in the same operando experiment. The application of KIE spectroscopy provides unprecedented molecular level insight into the structure of the diastereomeric intermediate surface complex and the phenomenon rate enhancement, which revolutionizes our understanding of chirally modified metal catalysts.