This study coupled a meteorological model with explicit bulk lightning and chemical transport models to investigate the impacts of lightning-induced nitrogen oxides (LNOx) on nitrogen monoxide (NO), nitrogen dioxide (NO2), and total reactive nitrogen oxide (NOy) measured on August 22, 2017, at the top of Mt. Fuji, Japan. Our simulation results indicated that the LNOx emitted around Wakasa Bay in the windward area of Mt. Fuji largely contributed to the NOy content measured at the top of Mt. Fuji. Furthermore, sensitivity experiments regarding the height of LNOx emissions indicated that the NOy content measured atop Mt. Fuji originated from LNOx emitted below 6 km. Our simulation assumed that a two-mode vertical distribution of LNOx emissions was more consistent with measured NOy at Mt. Fuji than a single-mode structure assumption in this case. A comparison of simulated NOx (= NO + NO2) and measured NOx at Mt. Fuji indicated that the reaction rates of the NO and NO2 cycles were well reproduced in our model; however, the ratio of NOz (NOy species other than NOx) to NOy estimated by the model were lower than the observed value, implying that the model either underestimated the reaction rate of LNOx or overestimated the wet removal of lightning-induced NOz. Finally, our results also suggest that the simultaneous observation of NOy and NOx is important for understanding LNOx emissions, subsequent atmospheric chemical reactions, and removal processes, as well as validating chemical transport models.
Read full abstract