The endoplasmic reticulum (ER) fills the cell with a continuous network of sealed membrane tubules and sheets. The ER is subdivided into microdomains mediating one-third of total protein biosynthesis, oxidative protein folding, secretion, protein quality control, calcium signaling, marcoautophagy/autophagy, stress sensing, and apoptosis. Defects in ER-calcium homeostasis underlie several diseases. Damage to the ER by misfolded membrane proteins is suppressed by specific HSPA/Hsp70 and DNAJ/Hsp40 chaperone pairs that select intermediates for ubiquitination and ER-associated degradation (ERAD) via the proteasome. The ER-transmembrane Hsp40 chaperone DNAJB12 and HSPA/Hsp70 also target toxic intermediates of misfolded membrane proteins for ER-associated autophagy (ERAA). DNAJB12-HSPA/Hsp70 maintain membrane protein degradation intermediates in detergent-soluble and degradation-competent states. DNAJB12-HSPA/Hsp70 also interact with the autophagy initiation kinase ULK1 on ER tubules containing ERAD-resistant misfolded membrane proteins (ERAD-RMPs). Omegasomes are ER microdomains where the autophagosome precursor or phagophore (PG) forms. ER tubules loaded with ERAD-RMPs enter omegasomes where they are converted into ER-connected PG (ER-PG). The Atg8 (autophagy related 8)-family member GABARAP (GABA type A receptor-associated protein) facilitates transfer of ERAD-RMPs from ER-PGs to autolysosomes (AL) that dock transiently with omegasomes. This article describes a model for DNAJB12-HSPA/Hsp70 action during the conformation-dependent triage in the ER of misfolded membrane proteins for folding versus proteasomal or AL degradation.
Read full abstract