The aim of this study was to compare the quality of plain yogurt made from cow milk (n = 10) and its plant-based analog made from coconut flesh extract (n = 14). Coconut yogurt alternatives were divided into 2 experimental groups based on differences in their color, which were noted after the packages had been opened. The first group included products with a typical white color (n = 8), and the second group comprised products with a grayish pink color (n = 6) that developed as a result of oxidative processes. In comparison with its plant-based analog, plain yogurt was characterized by higher values of lightness (L*), yellowness (b*) and chroma (C*), higher titratable acidity, a higher content of retinol and α-tocopherol, higher nutritional value of fat, and lower values of water-holding capacity (WHC) and redness (a*). Plain yogurt had lower volatile acidity than its plant-based analog with a grayish pink color. A comparison of yogurt analogs with different colors revealed that the product with a grayish pink color was characterized by a lower value of L*, and higher values of a*, b*, C*, and pH. An analysis of its fatty acid profile demonstrated that it also had a higher proportion of C14:0 and C18:1 cis-9; higher total monounsaturated fatty acids content; a lower proportion of C10:0, C12:0, and C18:2; a lower total content of polyunsaturated fatty acids (PUFA) and essential fatty acids; and a lower ratio of PUFA to saturated fatty acids. The yogurt analog with a grayish pink color had a lower total content of tocopherol isoforms than the remaining products. The yogurt analog with a white color had the highest WHC and γ-tocopherol content. Consumers should be aware of the fact that coconut yogurt alternatives may have nonstandard quality attributes. The differences between such products and yogurt made from cow milk should be explicitly communicated to consumers so that they could make informed purchasing decisions.
Read full abstract