Recent studies have shown that low energy ions constitute a significant part of the total ion population in the Earth's magnetosphere. In this study, we have used a comprehensive data set with measurements of cold (total energy less than 70 eV) ion velocity and density to determine their source. This data set is derived from Cluster satellite measurements combined with solar wind and interplanetary magnetic field measurements and geomagnetic indices. By using the guiding center equation of motion, we were able to calculate the trajectories and thus determine the source region of the cold ions. Our results show that the polar cap region is the primary source for cold ions. We also found that the expansion and contraction of the polar cap as a consequence of changes in solar wind parameters were correlated with the source region size and intensity of the cold ion outflow. Elevated outflow fluxes near the nightside auroral zone and the dayside cusps during disturbed conditions suggest that energy and particle precipitation from the magnetosphere or directly from the solar wind can enhance the outflow of cold ions from the ionosphere.