The effects of adjusting the nitrogen-phosphorus (N/P) ratio of wastewater and indigenous bacteria on swine wastewater treatment by Chlorella sp. HL were investigated. The optimal N/P ratio of Chlorella in swine wastewater was 20 by adjusting the phosphorus concentration. The participation of indigenous bacteria increased total extracellular polymeric substances content, which was beneficial to maintain the stability of the algal-bacterial consortium, and improved the algal density and the removal rate of total nitrogen, total phosphorus, and chemical oxygen demand by 47.8%, 24.0%, 30.7%, and 326.7%, respectively. Proteobacteria was the dominant phylum with the relative abundance of 71.58% in the algal-bacterial system at optimal N/P ratio, and Brevundimonas, Chryseobacterium, and Pseudomonas played positive roles in the establishment of symbiotic systems at the genus level. These results provide a theoretical basis for the construction of an efficient algal-bacterial symbiotic system in swine wastewater treatment and support for commercial scale-up.
Read full abstract