Global warming caused by massive carbon dioxide emissions can lead to a chain of ecological disasters. As one of the main sources of carbon emissions, transportation is of great significance, and the evaluation of its connections with carbon emissions is necessary to achieve “carbon neutrality”. Taking Beijing as an example, this study evaluated traffic efficiency (TE) by utilizing principal component analysis and fuzzy comprehensive evaluation. Using the Tapio decoupling model and coupling coordination degree model, the corresponding relationship between urban low carbon level (LCL) and TE was explored. The results showed the following: (1) The total carbon emission (CE) level exhibited fluctuating variation from increasing to decreasing. The carbon emission intensity (CEI) continued to slow down, and the rapid growth of population density played a key role in low-carbon development. (2) The traffic operations continually showed a positive trend in development. TE increased from a step-like to a slow shape, until it declined in 2020 due to the pandemic. (3) TE and LCL both developed from low coordination to an extreme level of coordination. Per capita carbon emission (CEP) and TE presented an inverted U-shaped curve; meanwhile, with increases in TE, the decline in CEI slowed. In addition, the weak decoupling of TE changed to become strong, due to CE and CEP, and maintained a strong decoupling state from CEI. (4) There is a necessity for the rational planning of land use for transportation infrastructure, the encouragement of a combination of public and private transportation, and the strengthening of the maintenance of the relative infrastructure and the management of traffic behaviors to attain a win–win situation. The results provide a reference for optimizing the traffic structure to achieve “carbon neutrality”.
Read full abstract