Diapers are essential for infants and patients with urinary incontinence. The super-absorbent polymer (SAP) in the core layer of diapers suffers from slow liquid absorption, fault formation, and reverse osmosis. Therefore, it is desirable to construct a core layer that can integrate rapid liquid absorption, uniform retention, and anti-seepage qualities. In this study, a diaper core layer and a three-dimensional fluffy network structure with a wetting gradient was constructed via one-step solution blow spinning (SBS). By regulating the content of the glutaraldehyde (GA) cross-linking agent, absorbent and insoluble fibers could be obtained. The ratio of super-absorbent fibers (SAF) to PAN-PVP micro-/nano fibers in the three-layer fiber structure and the gram weight of the core layer were adjusted. A wetting gradient was established when the weight of the adjusted gradient core layer was 2/3 that of the commercial core layer. The amount of reverse osmosis was reduced by 0.25 g, and the liquid absorption and retention were 30 times and 28.5 times, respectively, two and 3.5 times higher than those of commercial diapers. The SAF prepared by SBS could improve the core layer's liquid absorption rate, retention ratio, and comfort. The fibers are applicable in diapers, sanitary napkins, and other disposable products.