BackgroundBase Mine Lake (BML) is the first full-scale end pit lake for the oil sands mining industry in Canada. BML sequesters oil sands tailings under a freshwater cap and is intended to develop into a functional ecosystem that can be integrated into the local watershed. The first stage of successful reclamation requires the development of a phytoplankton community supporting a typical boreal lake food web. To assess the diversity and dynamics of the phytoplankton community in BML at this reclamation stage and to set a baseline for future monitoring, we examined the phytoplankton community in BML from 2016 through 2021 using molecular methods (targeting the 23S, 18S, and 16S rRNA genes) and microscopic methods. Nearby water bodies were used as controls for a freshwater environment and an active tailings pond.ResultsThe phytoplankton community was made up of diverse bacteria and eukaryotes typical of a boreal lake. Microscopy and molecular data both identified a phytoplankton community comparable at the phylum level to that of natural boreal lakes, dominated by Chlorophyta, Cryptophyta, and Cyanophyta, with some Bacillariophyta, Ochrophyta, and Euglenophyta. Although many of the same genera were prominent in both BML and the control freshwater reservoir, there were differences at the species or ASV level. Total diversity in BML was also consistently lower than the control freshwater site, but consistently higher than the control tailings pond. The phytoplankton community composition in BML changed over the 5-year study period. Some taxa present in 2016–2019 (e.g., Choricystis) were no longer detected in 2021, while some dinophytes and haptophytes became detectable in small quantities starting in 2019–2021. Different quantification methods (qPCR analysis of 23S rRNA genes, and microscopic estimates of populations and total biomass) did not show a consistent directional trend in total phytoplankton over the 5-year study, nor was there any consistent increase in phytoplankton species diversity. The 5-year period was likely an insufficient time frame for detecting community trends, as phytoplankton communities are highly variable at the genus and species level.ConclusionsBML supports a phytoplankton community composition somewhat unique from control sites (active tailings and freshwater lake) and is still changing over time. However, the most abundant genera are typical of natural boreal lakes and have the potential to support a complex aquatic food web, with many of its identified major phytoplankton constituents known to be primary producers in boreal lake environments.