BackgroundAir purifiers can enhance indoor air quality and health outcomes, and studies have primarily focused on filters and particulate matter (PM) in households. Photocatalytic oxidation (PCO) is a promising technique for eliminating gaseous pollutants and bioaerosols. However, no field study was conducted in household. Therefore, this study evaluated the effects of the PCO and PCO + filters intervention on indoor air pollutants and cardiopulmonary endpoints in households. MethodsA randomized, double-blind crossover clinical trial was conducted. Indoor air pollutants, including PM, bioaerosols, and gaseous pollutants and cardiopulmonary endpoints including lung function, fractional exhaled nitric oxide (FeNO), respiratory symptoms, and blood pressure were assessed before and after intervention. FindingsThis was the first study to evaluate the effects of PCO and PCO + filters interventions on indoor air pollutants and cardiopulmonary health in households. Indoor total volatile organic compounds (TVOC) and sulfur dioxides (SO2) significantly reduced after PCO intervention, however, we also observed the significant reduction in percentage of predicted values of forced vital capacity (FVC%) and forced expiratory volume in 3 s (FEV3%) and increased in FeNO after 13 days of PCO intervention. The PCO + filters intervention significantly reduced the levels of indoor PM1, PM2.5, PM4, PM10, total suspended particulate matter, ultrafine particles, airborne bacteria, fungi, endotoxin, mites, TVOC, nitrogen dioxide, and SO2, and marginal reduction in carbon monoxide. However, indoor carbon dioxide significantly increased after PCO/PCO + filters intervention. As for cardiopulmonary health, FVC%, and FEV1 % marginally increased 7 days after the PCO + filters intervention.
Read full abstract