A Boolean power S of a commutative ring R has the structure of a commutative R-algebra, and with respect to this structure, each element of S can be written uniquely as an R-linear combination of orthogonal idempotents so that the sum of the idempotents is 1 and their coefficients are distinct. In order to formalize this decomposition property, we introduce the concept of a Specker R-algebra, and we prove that the Boolean powers of R are up to isomorphism precisely the Specker Ralgebras. We also show that these algebras are characterized in terms of a functorial construction having roots in the work of Bergman and Rota. When R is indecomposable, we prove that S is a Specker R-algebra iff S is a projective R-module, thus strengthening a theorem of Bergman, and when R is a domain, we show that S is a Specker R-algebra iff S is a torsion-free R-module. For indecomposable R, we prove that the category of Specker R-algebras is equivalent to the category of Boolean algebras, and hence is dually equivalent to the category of Stone spaces. In addition, when R is a domain, we show that the category of Baer Specker R-algebras is equivalent to the category of complete Boolean algebras, and hence is dually equivalent to the category of extremally disconnected compact Hausdorff spaces. For totally ordered R, we prove that there is a unique partial order on a Specker R-algebra S for which it is an f-algebra over R, and show that S is isomorphic to the R-algebra of piecewise constant continuous functions from a Stone space X to R equipped with the interval topology.
Read full abstract