In this work, we present a novel preclinical device utilizing Torsional Wave Elastography (TWE). It comprises a rotational actuator element and a piezoceramic receiver ring circumferentially aligned. Both allow the transmission of shear waves that interact with the tissue before being received. Our main objective is to demonstrate and characterize the reliability, robustness, and accuracy of the device for characterizing the stiffness of elastic materials and soft tissues. Experimental tests are performed using two sets of tissue mimicking phantoms. The first set consists of calibrated CIRS gels with known stiffness value, while the second test uses non-calibrated manufactured phantoms. Our experimental observations show that the proposed device consistently and repeatably quantifies the stiffness of elastic materials with high accuracy. Furthermore, comparison with established techniques demonstrates a very high correlation (> 95%), supporting the potential medical application of this technology. The results obtained pave the way for a cross-sectional study aiming to investigate the correlation between gestational age and cervical elastic properties during pregnancy.
Read full abstract