We perform observational confrontation and cosmographic analysis of f(T,TG) gravity and cosmology. This higher-order torsional gravity is based on both the torsion scalar, as well as on the teleparallel equivalent of the Gauss–Bonnet combination, and gives rise to an effective dark-energy sector which depends on the extra torsion contributions. We employ observational data from the Hubble function and supernova Type Ia Pantheon datasets, applying a Markov chain Monte Carlo sampling technique, and we provide the iso-likelihood contours, as well as the best-fit values for the parameters of the power-law model, an ansatz which is expected to be a good approximation of most realistic deviations from general relativity. Additionally, we reconstruct the effective dark-energy equation-of-state parameter, which exhibits a quintessence-like behavior, while in the future the Universe enters into the phantom regime, before it tends asymptotically to the cosmological constant value. Furthermore, we perform a detailed cosmographic analysis, examining the deceleration, jerk, snap, and lerk parameters, showing that the transition to acceleration occurs in the redshift range 0.52≤ztr≤0.89, as well as the preference of the scenario for quintessence-like behavior. Finally, we apply the Om diagnostic analysis to cross-verify the behavior of the obtained model.
Read full abstract