Drug-induced Torsade de Pointes (TdP), a life-threatening polymorphic ventricular tachyarrhythmia, emerges due to the cardiotoxic effects of pharmaceuticals. The need for precise mechanisms and clinical biomarkers to detect this adverse effect presents substantial challenges in drug safety assessment. In this study, we propose that analyzing the physicochemical properties of pharmaceuticals can provide valuable insights into their potential for torsadogenic cardiotoxicity. Our research centers on estimating TdP risk based on the molecular structure of drugs. We introduce a novel quantitative structure-toxicity relationship (QSTR) prediction model that leverages an in silico approach developed by adopting the 4R rule in laboratory animals. This approach eliminates the need for animal testing, saves time, and reduces cost. Our algorithm has successfully predicted the torsadogenic risks of various pharmaceutical compounds. To develop this model, we employed Support Vector Machine (SVM) and ensemble techniques, including Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost). We enhanced the model's predictive accuracy through a rigorous two-step feature selection process. Furthermore, we utilized the SHapley Additive exPlanations (SHAP) technique to explain the prediction of torsadogenic risk, particularly within the RF model. This study represents a significant step towards creating a robust QSTR model, which can serve as an early screening tool for assessing the torsadogenic potential of pharmaceutical candidates or existing drugs. By incorporating molecular structure-based insights, we aim to enhance drug safety evaluation and minimize the risks of drug-induced TdP, ultimately benefiting both patients and the pharmaceutical industry.