An upgrade of the RFX-mod experiment is presently in the final design phase, aimed at widening the explored operational scenarios both in RFP and Tokamak configuration. The main design driver for this machine upgrade is the enhancement of the ‘shell-plasma proximity’, which is expected to provide a significant improvement in the plasma magnetic confinement. The achievement of this aim implies a major change of the internal components of the machine such as the removal of the present vacuum vessel, transferring the function of vacuum barrier to the duly modified toroidal support structure, and the integration of a new in-vessel support system to sustain the conductive stabilizing shell and the whole first wall. The paper presents an overview of the design choices and the proposed implementations, assessed on the base of engineering analyses and results of experimental tests performed on mock-ups of the new components. The solutions conceived to fulfill vacuum and electrical requirements of the in-vessel components, to guarantee their reliability during normal and abnormal operating conditions events, and interface compatibility with existing components and torus assembly sequence are finally highlighted.