Abstract Solar radiation balances significantly affect Earth’s surface energy balance and climate change. Studying top-of-the-atmosphere (TOA) albedo changes is of great significance for understanding Earth’s energy budget and atmospheric circulation. The Loess Plateau (LP), located in the middle reaches of the Yellow River in China, is one of the most severely eroded areas in the world. In this paper, long-term remote sensing data were used to analyze the changes in the TOA albedo in the LP from 1982 to 2016. The results showed that the TOA albedo, its atmospheric contribution (AC), and surface contribution (SC) exhibited decreasing trends: −0.0012, −0.0010, and −0.0003 a−1. The spatial pattern of the TOA albedo was similar to AC, which indicates that AC dominates the change in the TOA albedo. We detected driving factors for AC and SC and found that the cloud fraction (CF) was the main driving factor of the AC, whereas the soil moisture (SM) dominated the SC. The driving factors of two typical regions with a significantly decreasing trend in the TOA albedo were also detected. The Mu Us Desert, where vegetation improved significantly, showed a decreasing trend in the TOA albedo, and we found that NDVI was the main driving factor for the change in the SC of the TOA albedo. However, the Eastern Qilian Mountains, where snow cover decreased in recent years, also showed a significant decreasing trend in the TOA albedo; the SC here was mainly driven by the changes in snow cover days (SCD). These results indicate that changes in the surface environment alter the radiation balance. Significance Statement The Loess Plateau in China is one of the most severe cases of soil erosion in the world, and ecological restoration projects have been carried out to recover the fragile ecological environment. Our study was designed to explore changes in the top-of-the-atmosphere (TOA) albedo of the Loess Plateau between 1982 and 2016 using a long time series of multisource satellite products, and driving factors in the atmosphere and at the surface were analyzed. We concluded that the TOA albedo of the Loess Plateau decreased over 35 years, and its atmospheric contribution dominated the change in the TOA albedo. However, the significant ecological improvement in the Loess Plateau, especially in the central vegetation recovery region, such as the Mu Us Desert, was also strongly related to the regional changes in the surface contribution of the TOA albedo. The climate changes had a considerable impact on the eastern branch of the Qilian Mountains in the Qinghai region, where the decline in snow cover days affected the local Alpine meadow ecosystems; therefore, snow cover days also played a decisive role in the local variation of the surface contribution of the TOA albedo.