The expanding field of site-specific ligation of proteins and peptides has catalyzed the development of novel methods that enhance molecular modification. Among these methods, enzymatic strategies have emerged as dominant due to their specificity and efficiency in modifying proteins under mild conditions. Asparaginyl endopeptidase is a group of cyclotide-producing cysteine proteases from plants. These plant cysteine proteases, known for their specificity, effectively recognize the tripeptide motif (Asx-Xaa-Yaa) and cleave at the C-terminal side of Asx residues, forming acyl-enzyme intermediates that facilitate transpeptidation. Butelase 1 stands out as the most efficient AEP for protein engineering, yet challenges in its expression and purification limit its accessibility for widespread research and industrial use. To address these challenges, we engineered a new, catalytically efficient variant of Butelase 1, Butelase AY, by mutating the gatekeeping residues Val237Ala and Thr238Tyr within the LAD-1 region. These modifications significantly enhanced the stability and yield of Butelase AY, allowing for successful application in various peptide and protein engineering tasks. Butelase AY was tested on the peptide GLGKY, the globular protein GFP, and the intrinsically disordered protein α-synuclein, effectively labeling them with a fluorescent probe. Notably, Butelase AY maintained its efficiency with substrates containing unnatural amino acids, making it a promising candidate for biorthogonal applications. Importantly, the mutations did not compromise the enzyme’s specificity, as it continued to process model peptides and native protein substrates with N-term NHV recognition motifs effectively. In conclusion, Butelase AY presents a novel recombinant tool for diverse protein labeling and modifications, particularly in biorthogonal strategies. This innovation has the potential to expand applications in biotechnology and therapeutic development, ultimately revolutionizing protein engineering and its utility in synthetic biology.
Read full abstract