Additionally known as three-dimensional (3D) printing, additive manufacturing has made major advancements possible in the fields of engineering, business, the arts, education, and medical. Thanks to recent developments, it is now possible to print three-dimensional to create complex, useful living tissues, biocompatible substances, cells, and supporting structures are combined. Regenerative medicine is utilizing 3D bioprinting. Additive manufacturing technology, or 3D printing, has been labelled the “next big thing” and is predicted to overtake cell phones in popularity. 3D printers use digital templates to produce actual, three-dimensional items. Adding layers to a print, commonly referred to as additive manufacturing, allows for the use of more than a hundred different materials, including nylon, metal, and plastic. Applications for 3D printing can be found in many different industries, such as industrial design, manufacturing, dental, automotive, aerospace, civil engineering, education, jewellery, footwear, and geographic information systems. It has shown to be a simple and affordable solution for a variety of use cases. Using computer-aided design tools and programming, three-dimensional printing is a sophisticated technique that adds material to a base surface to create three-dimensional things. Additive layer manufacturing, also referred to as 3D printing, is the technique of creating three-dimensional things by depositing or solidifying material one layer at a time. Using a computer-aided design module, pharmaceutical components are organized in a three-dimensional pattern. Afterwards, the constituents are converted into a machine-readable format resembling the surface of a three-dimensional dosage form. 3D printing has been used for jewelry, shoe-making, architecture, engineering & construction, the automotive industry as well as the aerospace field, dentistry and medicine, plus geographic information systems (GIS), civil engineering and education. After that stage of the process is completed, the surface transferred to the machine is then printed in different layers. Bioprinting is an interdisciplinary domain that integrates additive manufacturing with biology and material sciences to manufacture threedimensional structures representative of living organisms. The ability to create biological tissues and organs has attracted considerable attention in biomedical research owing to the rising demand for personalized medicine. This scenario propelled bioprinting forward which received much interest thus triggering comprehensive research efforts by various players such as companies, universities as well as research institutes. The goal of this book is to provide a thorough analysis of the complex and rapidly evolving field of bioprinting by critically analyzing and evaluating the existing scientific literature.