Tomatoes are readily available and affordable vegetables that offer a range of health benefits due to their bioactive molecules, such as antioxidants and antimicrobials. In contrast to the widely recognized antioxidant properties of tomatoes, their antimicrobial properties remain largely unexplored. Here, we present our findings on the antimicrobial properties of tomato juice and peptides, namely, tomato-derived antimicrobial peptides (tdAMPs), in relation to their effectiveness against typhoidal Salmonella. Our research has revealed that tomato juice demonstrates significant antimicrobial properties against Salmonella Typhi, a pathogen that specifically affects humans and is responsible for causing typhoid fever. By employing computational analysis of the tomato genome sequence, conducting molecular dynamics simulation, and performing functional analyses, we have successfully identified two tdAMPs, namely, tdAMP-1 and tdAMP-2. These tdAMPs have demonstrated potent antimicrobial properties by effectively disrupting bacterial membranes. The efficacy of tdAMP-2 is shown to be more effective than tdAMP-1. The efficacy of tdAMP-1 and tdAMP-2 has been demonstrated against drug-resistant S. Typhi, as well as hyper-capsular S. Typhi variants that possess hypervirulent characteristics, which are presently circulating in countries with endemicity. Tomato juice, along with the two tdAMPs, has demonstrated effectiveness against uropathogenic Escherichia coli as well. This underscores their potential as viable agents in combating certain Gram-negative pathogens. This study provides valuable insights into the development of effective and sustainable public health strategies that utilize tomato and its derivatives as lifestyle interventions.IMPORTANCEIn this study, we investigate the antimicrobial properties of tomato juice, the most widely consumed affordable vegetables, as well as tomato-derived antimicrobial peptides, in relation to their effectiveness against foodborne pathogens with an emphasis on Salmonella Typhi, a deadly human-specific pathogen.
Read full abstract