Acoustic multiple scattering by a cluster of cylinders in an acoustic medium is considered. A fast recursive technique is described which takes advantage of the multilevel Block Toeplitz structure of the linear system. A parallelization technique is described that enables efficient application of the proposed recursive algorithm for solving multilevel Block Toeplitz systems on high performance computer clusters. Numerical comparisons of CPU time and total elapsed time taken to solve the linear system using the direct LAPACK and TOEPLITZ libraries on Intel FORTRAN, show the advantage of the TOEPLITZ solver. Computations are optimized by multi-threading which displays improved efficiency of the TOEPLITZ solver with the increase of the number of scatterers and frequency.