NF-κB signaling is a key regulator of inflammation and atherosclerosis. NF-κB cooperates with bromodomain-containing protein 4 (BRD4), a transcriptional and epigenetic regulator, in endothelial inflammation. This study aimed to investigate whether BRD4 inhibition would prevent the proinflammatory response towards TNF-α in endothelial cells. We used TNF-α treatment of human umbilical cord-derived vascular endothelial cells to create an in vitro inflammatory model system. Two small molecule inhibitors of BRD4-namely, RVX208 (Apabetalone), which is in clinical trials for the treatment of atherosclerosis, and JQ1-were used to analyze the effect of BRD4 inhibition on endothelial inflammation and barrier integrity. BRD4 inhibition reduced the expression of proinflammatory markers such as SELE, VCAM-I, and IL6 in endothelial cells and prevented TNF-α-induced endothelial tight junction hyperpermeability. Endothelial inflammation was associated with increased expression of the heparin-binding growth factor midkine. BRD4 inhibition reduced midkine expression and normalized endothelial permeability upon TNF-α treatment. In conclusion, we identified that TNF-α increased midkine expression and compromised tight junction integrity in endothelial cells, which was preventable by pharmacological BRD4 inhibition.
Read full abstract