Microplastics (MPs) have emerged as a major environmental issue. They have been found to cause significant reproductive toxicity and lower testosterone levels in adult males, though the exact mechanisms remain unclear. In this study, C57bl/6 mice were orally exposed to saline or varying doses (0.25, 0.5, and 1 mg/day) of 5 μm polystyrene MPs (PS-MPs) for 4 weeks, and TM3 mouse Leydig cells were treated with different concentrations of PS-MPs. Our results found that exposure to PS-MPs significantly reduced testosterone levels and impaired the synthesis function of testicular steroids. In vitro, PS-MPs reduced steroid synthesis in Leydig cells. Treatment with PS-MPs significantly increased the apoptosis rate and BAX/BCL2 ratio in Leydig cells. Additionally, GSH-px and SOD activities decreased, while MDA levels increased, along with a rise in mitochondrial ROS. In conclusion, chronic PS-MP exposure reduced testosterone levels in mice through mitochondrial oxidative stress and BAX/BCL2-mediated apoptosis. This study offers new insights into the health risks posed by MPs.