ObjectiveTo compare torque expression characteristics between rectangular slot (0.022″ x 0.028″) Damon Q passive self-ligating brackets (Ormco, Glendora, Calif) and square slot (0.021″ x 0.021″) Pitts 21 brackets (OC Orthodontics) using 0.019″ x 0.025″ Stainless Steel and 0.020″ x 0.020” Titanium Molybdenum alloy wires at various incisal inclinations using finite element analysis. The null hypothesis was that there were no differences in torque expression in both tested groups. MethodsReporting guidelines for in-silico studies using finite element analysis in medicine (RIFEM) were used. Damon Q and Pitts 21 brackets were scanned and 3D models generated. Brackets were placed on a 3-D model of a maxillary central incisor with its long axis inclined at 0⁰,5⁰,10⁰,15⁰ and 20⁰ to the occlusal plane. Final 0.019″ x 0.025″ SS and 0.020″ x 0.020” TMA archwires were inserted into slots of both tested brackets. Geometric models were converted into finite element models. Material properties were assigned for involved structures with automatic meshing performed by software. Torque movements were simulated with the FE program Ansys Space claim R 22. ResultsTorque moment values, torque expression and Von - Mises stress was higher in Pitts 21 than Damon Q at all inclination angles. There was a gradual increase in the magnitude of values with decrease in incisal inclination. ConclusionSquare slot passive self-ligating brackets show superior torque expression characteristics as compared to rectangular wire-rectangular slot combinations. The FEM results should be validated with in-vivo studies in order to confirm the findings.
Read full abstract