Numerous sustainable water processing techniques have been widely investigated and are capable of boosting the quality of water. Among these techniques, photonanocatalysis has stood tall with great promises in the last few decades. Nonetheless, a major challenge in the environmental remediation of photocatalyst technology is to develop an ideal photocatalyst that must have excellent photocatalytic efficiency, large specific surface area, maximum harvesting of solar energy, high durability and recyclability. Due to their stability, low toxicity, low cost and superhydrophilicity TiO2 has been used by researchers as an efficient photocatalyst for the degradation of organic pollutants. Unfortunately, it suffers greatly due to its high band gap with 3.2[Formula: see text]eV, insufficient visible light response, fast photogenerated electrons and holes recombination rate and serious agglomeration. Keeping these views, the present review highlights the principal results of studies on current practical synthesis and photocatalytic activity of graphene-based TiO2 nanocomposite materials for the treatment of water. The amalgamation of graphene oxide (GO) and reduced graphene oxide (rGO) with nanoscale TiO2 particles results in synergistic properties thereby tuning and increasing the functionality of the composite. In this regard, the review also addressed the progress and insight into graphene-based TiO2 nanocomposite in photocatalytic removal of organic pollutants including basis mechanism, possible key strategies of the composite, and an overview of how to elevate efficacy. Finally, brief challenges and future perspectives in this field are also presented. Indeed, this work illustrated that graphene-based TiO2 composite nanomaterials can be a green signal in the future of photocatalysis targeting water pollution remediation.
Read full abstract