Attempts to geochemically distinguish between metamorphic-hydrothermal systems that form orogenic gold deposits and both reduced and oxidized magmatic-hydrothermal systems using isotopes or metal associations have proven ambiguous, particularly for orogenic gold and reduced intrusion-related gold systems. The absence of conclusive geochemical discriminators and the overlap in geologic characteristics have led to gold deposit models being potentially incorrectly applied, which in turn negatively affect regional mineral exploration and mine planning. In this study, in situ electron microprobe geochemical analyses of hydrothermal monazite and xenotime crystals associated with different types of gold-bearing deposits are shown to be effective geochemical discriminators. There are notable differences in mineral chemistry such as rare earth element (REE) profiles, total light REE, Dy, Er, Pr, Y, Nd/Sm, and La/Sm that distinguish monazite precipitated from metamorphic-hydrothermal fluids that form orogenic gold deposits and those precipitated from magmatic-hydrothermal fluids that form both porphyry Cu-Mo-Au and reduced intrusion-related gold deposits. Notable differences in overall xenotime abundances and concentrations of heavy REEs, Ca, and Sc are distinctive between the different deposit classes for xenotime. The origin of the controversially classified Pogo gold deposit, Tintina gold province, Alaska, which has been characterized as both a reduced intrusion-related and an orogenic gold deposit, is tested based upon the noted chemical differences associated with these hydrothermal phosphates. The findings of this study have implications for exploration and mine development in the Tintina gold province and other areas that contain deposits that are controversially classified as either orogenic or as magmatic-hydrothermal gold deposits.