Cubic perovskite titanium stannous oxide (TiSnO3) is a promising material for various applications due to its functional properties. However, understanding how these properties change under external stress is crucial for its development and optimization. This study employed density functional theory calculations to investigate the structural, electronic, optical, thermal, and mechanical properties of TiSnO3 under varying degrees of external static isotropic stress (0-120 GPa). The study reveals a significant decrease in the bandgap of TiSnO3 with increasing stress due to lattice modifications and the formation of delocalized electrons. Partial density of states analysis indicates that Sn and O states play a key role in shaping the electronic band structure. TiSnO3 exhibits increased light absorption with stress, accompanied by a blue shift in absorption peaks, whereas, both polarizability and refractive index decrease with increasing stress. Mechanically, all elastic moduli (bulk, shear, and Young's) show an increase under stress, signifying a stiffening response of the material under stress. Similarly, the Pugh ratio suggests a transition from ductile to brittle behaviour at elevated stress levels. Phonon dispersion calculations indicate the instability of the cubic phase at 0 K. However, a phonon gap emerges at 30 GPa and widens with increasing stress. X-ray diffraction further supports these findings by demonstrating a shift in diffraction peaks towards higher angles with increasing stress, consistent with the applied stress. In conclusion, this computational study offers a thorough understanding of how external stress influences the properties of TiSnO3, providing valuable insights for potential applications in various fields.
Read full abstract