Structure determines function. The discovery of the DNA double-helix structure revealed how genetic information is stored and copied. In the mammalian cell nucleus, up to two meters of DNA is compacted by histones to form nucleosome/DNA particle chains that form euchromatin and heterochromatin domains, chromosome territories and mitotic chromosomes upon cell division. A critical question is what are the structures, interactions and 3D organization of DNA as chromatin in the nucleus and how do they determine DNA replication timing, gene expression and ultimately cell fate. To visualize genomic DNA across these different length scales in the nucleus, we developed ChromEMT, a method that selectively enhances the electron density and contrast of DNA and interacting nucleosome particles, which enables nucleosome chains, chromatin domains, chromatin ultrastructure and 3D organization to be imaged and reconstructed by using multi-tilt electron microscopy tomography (EMT). ChromEMT exploits a membrane-permeable, fluorescent DNA-binding dye, DRAQ5, which upon excitation drives the photo-oxidation and precipitation of diaminobenzidine polymers on the surface of DNA/nucleosome particles that are visible in the electron microscope when stained with osmium. Here, we describe a detailed protocol for ChromEMT, including DRAQ5 staining, photo-oxidation, sample preparation and multi-tilt EMT that can be applied broadly to reconstruct genomic DNA structure and 3D interactions in cells and tissues and different kingdoms of life. The entire procedure takes ~9 days and requires expertise in electron microscopy sample sectioning and acquisition of multi-tilt EMT data sets.
Read full abstract