Malware, or malicious software, continues to evolve alongside increasing cyberattacks targeting individual devices and critical infrastructure. Traditional detection methods, such as signature-based detection, are often ineffective against new or polymorphic malware. Therefore, advanced malware detection methods are increasingly needed to counter these evolving threats. This study aims to compare the performance of various feature selection methods combined with the XGBoost algorithm for malware detection using the Drebin dataset, and to identify the best feature selection method to enhance accuracy and efficiency. The experimental results show that XGBoost with the Information Gain method achieves the highest accuracy of 98.7%, with faster training times than other methods like Chi-Squared and ANOVA, which each achieved an accuracy of 98.3%. Information Gain yielded the best performance in accuracy and training time efficiency, while Chi-Squared and ANOVA offered competitive but slightly lower results. This study highlights that appropriate feature selection within machine learning algorithms can significantly improve malware detection accuracy, potentially aiding in real-world cybersecurity applications to prevent harmful cyberattacks.
Read full abstract