We extend the formalism of time-sliced perturbation theory (TSPT) for cosmological large-scale structure to include non-Gaussian initial conditions. We show that in such a case the TSPT interaction vertices acquire new contributions whose time-dependence factorizes for the Einstein-de Sitter cosmology. The new formulation is free from spurious infrared (IR) enhancements and reveals a clear IR structure of non-Gaussian vertices. We use the new technique to study the evolution of oscillating features in primordial statistics and show that they are damped due to non-linear effects of large bulk flows. We derive the damping factors for the oscillating primordial power spectrum and bispectrum by means of a systematic IR resummation of relevant Feynman diagrams.
Read full abstract