Surface deformation poses significant risks to urban infrastructure, agriculture, and the environment in many regions worldwide, including Rwanda and the neighboring areas. This study focuses on surface deformation mapping and time series analysis in Rwanda and the neighboring areas from 2 July 2016 to 8 June 2023 using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR). The influence of atmospheric delay error is effectively reduced by integrating the Generic Atmospheric Correction Online Service (GACOS), which provides precise atmospheric delay maps. Then the SBAS-InSAR method is utilized to generate surface deformation maps and displacement time series across the region. The results of this study indicated that the maximum deformation rate was −0.11 m/yr (subsidence) and +0.13 m/yr (uplift). Through time series analysis, we quantified subsidence and uplift areas and identified key drivers of surface deformation. Since subsidence or uplift varies across the region, we have summarized the different deformation patterns and briefly analyzed the factors that may lead to deformation. Finally, this study underscores the importance of SBAS-InSAR for tracking surface deformation in Rwanda and the neighboring areas, which offers valuable perspectives for sustainable land utilization strategizing and risk mitigation.
Read full abstract