In recent times, ionic liquid-based (ILs) electrolytic system has emerged as suitable alternative to the conventional organic solvent-based electrolytic system. However, since, anion of ILs is known to form aggregates in the presence of lithium-ions (Li+), and this can influence the transport properties of Li+ ion in a significant manner, it is, therefore, important to understand how lithium-ions influence the structure and dynamics of ILs. With this objective, in the present study, intermolecular interaction, structural organization, and dynamics of monocationic ILs (MILs) and dicationic IL (DIL) have been studied in the absence and presence of lithium salt. Specifically, for this purpose, two MILs, 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide ([C3C1im][NTf2]), 1-hexyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide ([C6C1im][NTf2]), and a DIL, 1,6-bis(3-methylimidazolium-1-yl)hexane bis(trifluoromethylsulfonyl)amide ([C6(mim)2][NTf2]2) have been chosen in such a way that either the alkyl chain of MILs becomes equal or half of the spacer chain length of DIL. To understand the effect of the addition of lithium-ion on the structural organization of MILs and DIL, steady-state absorption and fluorescence spectroscopies, time-resolved fluorescence anisotropy and nuclear magnetic resonance (NMR) techniques have been used. Structural organization in the apolar and polar domains of ILs has been probed by following the rotational diffusion of suitably chosen solute in the concerned media through time-resolved fluorescence anisotropy (TRFA) measurements. TRFA studies have revealed that with the addition of Li+ ion, coordination between the Li+ ions and anions of MILs and DILs takes place in the ionic region leading to a change in the structural organization of the apolar regions of the respective medium. In fact, upon adding lithium-ions, a reduction in the packing of alkyl chains has also been observed for the MILs. However, not much change in the structural organization of the apolar region of the DIL has been observed when Li+ ion is added to it. In the presence of Li+ ions, a similar trend in the change of structural organization of polar regions for both MILs and DIL has been observed. Further, measurements of the self-diffusion coefficient through NMR have also supported the observation that Li+ ion also perturbs the nanostructural organization of the MIL in a significant manner than that it does for the DIL. The behavior of DIL in the presence of Li+ ion, as revealed by the present study, has been rationalized by considering the folded arrangement of DIL in the fluid-structure. Essentially, all of these investigations have suggested that the addition of lithium-ion significantly alters the microscopic behavior of MILs in comparison to that of DIL. The outcome of this study is expected to be helpful in realizing the potentials of these media as electrolytes in battery applications.
Read full abstract